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Abstract
Aim: A discrimination analysis has been explored for the probabilistic classifica-
tion of healthy versus ovarian cancer serum samples using proteomics data from 
mass spectrometry (MS).  Methods: The method employs data normalization, 
clustering, and a linear discriminant analysis on surface-enhanced laser desorp-
tion ionization (SELDI) time-of-flight MS data.  The probabilistic classification 
method computes the optimal linear discriminant using the complex human blood 
serum SELDI spectra.  Cross-validation and training/testing data-split experi-
ments are conducted to verify the optimal discriminant and demonstrate the accu-
racy and robustness of the method.  Results: The cluster discrimination method 
achieves excellent performance.  The sensitivity, specificity, and positive predic-
tive values are above 97% on ovarian cancer.  The protein fraction peaks, which 
significantly contribute to the classification, can be available from the analysis 
process.  Conclusion: The discrimination analysis helps the molecular identities 
of differentially expressed proteins and peptides between the healthy and ovarian 
patients.
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Introduction
Ovarian cancer is the leading cause of death from  

gynecological malignancies and is the fifth most common 
cancer in women.  Currently, more than 80% of ovarian 
cancer patients are diagnosed at a late clinical stage when 
there is only a 20% chance of survival for up to 5 years.  
In contrast, the 20% of women diagnosed with early-stage 
disease have an excellent prognosis, with over 95% living 
longer than 5 years after their diagnosis.  It is encouraging 
to correctly identify the ovarian cancer disease while it is 
still in stage I.  The current biomarker repertoire cannot de-
tect treatable early-stage cancer and often classifies it as the 
common benign condition.  With the urgent need for better 
diagnosis, it is unfortunate that the number of new markers 
submitted for regulatory approval has virtually dried up.

The cellular abundance of tens of thousands of differ-
ent proteins, along with their cleaved or modified forms, 
is a reflection of ongoing physiological and pathological 
events.  The biomolecules in the cancer state may exhibit a 
series of particular activities related to cancer development 

on proteomics.  The degradation and cleavage of the pro-
teins can generate fragments small enough to enter the 
blood passively, producing diagnostic traces in the blood.  
Thus the low molecular weight (LMW) region of the blood, 
which is a mixture of small intact proteins plus fragments 
of the large proteins, represents all classes of proteins[1–5].

Mass spectrometry (MS) provides high-resolution mass 
information for lower weight proteins.  It is a powerful tool 
for determining the masses of biomolecular fragments pres-
ent in complex samples[6–9].  A mass spectrum consists of a 
set of mass-to-charge (m/z) values and corresponding rela-
tive intensities that are a function of all ionized molecules 
present with the m/z ratio.  MS proteomics generate the 
lists of proteins that increase or decrease in expression as a 
cause or consequence of pathology and the proteomic sig-
natures to characterize the pattern diagnostics for the early 
detection of cancer.  Therefore, serum proteomics from MS 
data would show a diagnostic classifier through testing for 
the presence or absence of the molecules and their abun-
dance.  Surface-enhanced laser desorption ionization–time 
of flight (SELDI–TOF) and matrix-assisted laser desorption 
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ionization (MALDI) MS are the two most popular ap-
proaches presently employed for detecting quantitative or 
qualitative changes in circulating serum or plasma proteins 
in relation to the presence of cancer[6].  In SELDI, the pro-
teins of interest from biologically-complex samples bind 
selectively to chemically-modified affinity surfaces, with 
non-specifically-bound impurities washed away.  The re-
tained sample is complexed with an energy-absorbing mol-
ecule and analyzed by laser desorption ionization TOF MS, 
producing spectra of the m/z ratio[10].  MALDI is similar 
to SELDI except that it does not have the preselection or 
enrichment steps for certain proteins in the sample mixture 
by allowing fractionation based on prebinding to different 
surfaces or chemical coatings.  In MALDI, the samples are 
mixed with a crystal forming matrix, placed on an inert 
metal target, and subjected to a pulsed laser beam to pro-
duce gas phase ions that traverse a field-free flight tube.  
The samples are then separated by mass/charge ratio[7,8,10,11].

Since MS spectra contain a huge number of peaks 
reflecting the large amount of protein fragments in the 
sample, a manual inspection or a simple comparison to dis-
tinguish between healthy or cancerous conditions from the 
spectral differences is impractical.  The discrimination of 1 
physical condition from another by comparing their mass 
spectra has been used in a previous study by Petricoin et 
al[12].  Petricoin et al used a bioinformatics approach on the 
raw mass spectra (OC-H4) related to ovarian cancer to dif-
ferentiate between cancerous and non-cancerous patients.  
The data consisted of 218 serum spectra from 100 ovarian 
cancer patients and 118 non-cancer patients.  The prelimi-
nary training set of spectra derived from 50 unaffected 
women, and 50 patients with ovarian cancer were analyzed 
by an iterative artificial intelligence algorithm.  The dis-
covered pattern was then used to classify the rest of 116 
independent masked serum samples: 50 from women with 
ovarian cancer, and 66 from unaffected women or those 
with non-malignant disorders.

The discovered pattern correctly identified all 50 ovar-
ian cancer cases in the masked set, including all 18 stage I 
cases.  Of the 66 cases of non-malignant disease, 47 were 
recognized as not cancer, and 17 were not matched.  Petri-
coin and coworkers recently created 2 additional ovarian 
data sets using other processes, which are available from 
the NIH and FDA Clinical Proteomics Program[13].

In this paper we propose a novel algorithm for the pat-
tern classification of healthy versus cancer from protein 
mass spectra.  This is archived through the building of an 
optimal linear discriminant by maximizing the across-class 
variance while minimizing the within-class variance.  It is 

capable of classifying the state of healthy versus disease 
from human serum mass spectra.  The factors that may po-
tentially affect the classification are also investigated.

Materials and methods

Sample sources  Two ovarian SELD–TOF mass spec-
tra data sets were obtained from the NIH and FDA Clinical 
Proteomics Program (http://home.ccr.cancer.gov/ncifdapro-
teomics/ppatterns.asp).  They were created through weak 
cation exchange chips, and named as OC-WCX2a and OC-
WCX2b.  OC-WCX2a used the same samples as OC-H4 
(through hydrophobic chips) reported in Petricoin et al’s 
study[12].  OC-WCX2a samples were processed by hand, 
while OC-WCX2b was generated through robotic sample 
handling (eg washing and incubation) and from the up-
graded PBSII SELDI-TOF mass spectrometer (Ciphergen, 
Freemont, CA, USA).

The healthy samples in OC-WCX2a came from women 
at risk for ovarian cancer, while the ovarian cancer-positive 
samples came from women with tumors spanning all major 
epithelial subtypes and stages of disease.  Gold standards 
were used for the definitive diagnosis obtained by biopsy, 
surgery, autopsy, long-term follow up, or other acknowl-
edged standard.  Each spectrum in these data sets is con-
tained in the individual file and is separated into the healthy 
or disease state.  These data files are in either comma-
delimited or Microsoft Excel (Seattle, WA USA) format.

In OC-WCX2a, the median age was 49 years (range 
21–75).  On the basis of age distribution, premenopausal 
and postmenopausal women were equally represented in 
the training and test groups, thus menopausal status should 
not have been a discriminator in the analysis.  The OC-
WCX2b sample set included 253 patients (91 controls 
and 162 patients with ovarian cancers).  The ranges of the 
ages of patients varied substantially (cases=32−78 years; 
controls=23−83 years).  OC-WCX2a was sampled at 15154 
m/z values over the range 0–20000, while the spectral 
points of OC-WCX2b were up to16 382 m/z values.

Principles and methods  The classificatory discrimi-
nant analysis is generally used to classify observations into 
two or more known groups on the basis of the observation 
value features.  Euclidean distance is used to determine 
the proximity.  A linear classifier achieves this by making 
a classification decision based on the value of the linear 
combination of the features.  The linear discriminant analy-
sis (LDA) is used in statistics to find the linear combina-
tion of features which best separate two or more classes 
of objects or events.  The resulting combinations may be 
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used as a linear classifier, or more commonly in dimen-
sionality reduction (preselection) before later classification.  
LDA explicitly attempts to model the difference between 
the classes of data.  There are two classes for LDA in our 
case.  Consider a set of observations (x; MS peak measure-
ments) for each sample with known class (y; cancerous or 
not).  This set of samples is called the training or calibra-
tion data set.  The classification problem is then to find a 
good predictor for the class y of any sample of the same 
distribution (not necessarily from the training set) given 
only an observation x.  LDA approaches the problem by as-
suming that the probability density functions                 and                         

are both normally distributed.  Under this 
assumption, the Bayes’ optimal solution is to predict 
points as being from the second class if the likelihood 
ratio is below threshold T, so that

                                                                 .
If we make the simplifying homoscedastic assumption (ie 
that the class covariances are identical), then several terms 
cancel and the above decision criterion becomes a thresh-
old on the scalar product (the standard inner product of the 
Euclidean space),                , for some constant c, where 
                                                            .
This means that the probability of an input x being in a 
class y is purely a function of this linear combination of the 
known observations.  For a set of mass spectral peaks and a 
classification variable defining their groups, we can devel-
op a discriminant criterion using a measure of generalized 
squared distance to classify each sample profile into one of 
the groups.  The derived discriminant criterion then can be 
applied to a second new test data set.

The performance of a discriminant function can be 
diagnosed by estimating error rates.  The error rates are 
from the resubstitution or cross-validation results.  Re-
substitution classification puts each observation into the 
established model to summarize the misclassified rate.  
Cross-validation treats n-1 out of n training samples as a 
training set.  It determines the discriminant functions based 
on these n-1 observations and then applies them to clas-
sify the one sample left out.  This is done for each of the n 
samples.  The overall misclassification rate for each group 
is the proportion of samples in that group that are misclas-
sified.  This method achieves a nearly unbiased estimate, 
but with a relatively large variance.  To demonstrate the 
accuracy and robustness of the method, samples are split 
into training and test data sets.  The use of a test set allows 
one to confirm that the discriminant has not been over fit 
to the training data.  If the discriminant has been over fit to 

the training spectra then one would expect excellent per-
formance in the classification of the training spectra, but 
poor performance in the classification of the test spectra.  
We have designed and implemented the method by SAS 
(SAS/STAT, version 9; SAS Institute, Cary, NC, USA) to 
derive the discriminant functions and then classify complex 
samples from MS data.

Procedures
Baseline subtraction and intensity normalization  

Sample classification from proteomic data is often dif-
ficult because the signal intensity for each m/z point can 
be affected by both biological processes and experimental 
condition variabilities, as bias introduced by sample nature, 
chemical reagents, protein chip quality, mass spectrometer 
instrumentation, and operator variance can effect overall 
spectral performance.  The preprocessing steps of MS out-
put are critical for the overall analysis of proteomic data 
and pattern recognition.  Each mass spectrum exhibits a 
base intensity level (a baseline) that varies across the m/z 
axis, and generally varies across different fractions.  When 
the baseline is subtracted, the results in some m/z peaks 
may have negative relative intensities.

The absolute peak intensities may not be comparable 
across different samples.  This motivates the need for a 
normalization scheme which ultimately enables the com-
parison of the peak profiles.  A number of choices of nor-
malization are available.  After experimental computation, 
we chose to normalize with respect to the maximum in-
tensity in the sample value within the randomly-generated 
subset.  The processed intensities could be interpreted over 
a uniform range across fractions and samples.  In this way, 
differences in spectral quality that can emanate from bias-
es, such as protein chip variance, and not from the inherent 
disease process itself can be minimized.  Also, this method 
allows for low-amplitude features to contribute substan-
tially to the classification.  The spectra are normalized ac-
cording to the formula:

                   NV=(V–Min)/(Max–Min)                        (1)
where NV is the normalized value, V is the intensity 

value, Min is the intensity of the smallest intensity value, 
and Max is the maximum intensity of the m/z bin within the 
randomly-selected pattern.  This equation linearly normal-
izes the peak intensities so as to fall within the range 0–1.

Peak cluster and alignment across samples  Com-
plex fragment mixtures produce a commensurate number of 
m/z peaks from 0 up to the upper limit of detection.  It has 
been found that no peaks occurred in exactly the same lo-
cation across all spectra.  This is not surprising since there 
can be considerable spatial variability due to the instrument 
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(instrument error is 0.2%*m/z) and intra- and inter-patient 
variability.  In addition, a particular m/z peak may consist 
of many subpeaks from different molecular fragments.

In order to make the peak profiles comparable across 
different samples, we need to cluster and align the same 
biological peak that might be horizontally shifted in dif-
ferent spectra and reset them into one common set of peak 
locations across all of the samples.

Visual examination of the individual spectra showed 
that the peaks are not evenly distributed over the entire 
m/z range.  The number of peaks approximately decreases 
as the m/z ratio increases.  The misclassification result 
showed that peak clustering based on a fixed space was 
not feasible.  Bin processing would be a good choice.  For 
each spectrum, the horizontal axis (m/z) is divided into bins 
of equal numbers of nearest neighbors (or more advance 
approaches using spatially-adapted bins).  The m/z values 
within a given bin are replaced with the midpoint, and the 
corresponding expression intensities are replaced with the 
maximum expression values across that bin.  This approach 
has two strong benefits: to yield good peak calibrations, 
and logically reduce the dimension of the data.  This en-
ables us to maximally discriminate between the healthy and 
normal samples in the training set.

Step-peak selection  The majority of the peaks are 
not helpful in classifications.  Another limitation is the near 
singularity of the covariance matrices when the number of 
peaks used for the classification is too large.  The detect-
able peaks in the spectra can be selected from the initial 
analysis by the measure of discriminatory power for all 
peaks.  The peaks with discriminative information are more 
likely to represent individual proteins, protein fragments, 
or peptides.

In this peak-reduction procedure, the peaks are ordered 
according to their information content as measured by the 
F-statistics.  This is equivalent to computing the ratio of 
variances of peak intensities between and within the two 
groups (B/W ratio) and sorting in decreasing order.  We 
subsequently experimented with stepwise discriminant 
analysis to select a subset of the peaks for use in discrimi-
nating among the classes.  The peaks are chosen to enter 
the model according to the significance level of an F-test 
statistics.  In most cases, any peaks are considered have 
some discriminatory power however small.  In order to 
prevent any peaks, including those that do not contribute 
to the discriminatory power of the model in the population, 
a small significance level should be specified.  Peak selec-
tion simultaneously reduces the dimension of the data and 
preserves the ability to discriminate one class from another, 

thus providing the best discriminators using the sample es-
timates.

Discrimination modeling and diagnosis  The clas-
sification methods have been explored using the statistical 
tools as follows: linear discrimination, quadratic discrimi-
nation, non-parametric discrimination (kernel, k-nearest 
neighbor classification, and Mahalanobis distance) and 
linear support vector machines.  The entire scheme was 
implemented with SAS.

When a set of MS training spectra is input, it outputs 
a discriminant classifier capable of classifying new mass 
spectra into one of the classes.  The model is diagnosed 
in terms of misclassification by resubstitution and cross-
validation.

Training/test-split validation  The utility of proteomics 
patterns is highly dependent upon the level of the inherent 
sensitivity, specificity, and positive predictive value (PPV).  
Test data are used to determine the correct classification 
based on the classifier constructed from the training set and 
to ensure the power and quality of the methods.  Sensitiv-
ity (true positive rate) is probability that an individual with 
the disease will have a positive test.  Sensitivity measures 
the proportion of people with the disease that test positive, 
while specificity (true negative rate) is the probability that 
an individual without the disease will have a negative test.  
Specificity measures the proportion of the people without 
the disease who test negative.  PPV is the probability that 
an individual with a positive test will have the disease.  
(Given a positive test, what is the probability of having the 
disease).  PPV measures the proportion of patients with the 
disease out of all patients testing positive.

In the data-split method, the input data set is split into 
a training set (70%), which is given to the classification 
method in order to build the model, and a test set (30%), 
which is used to assess the quality of the model.  Conse-
quently, one would expect the second validation test to be 
more stringent and to predict higher and more realistic er-
ror rates.

Results

The general strategy of the proteomics program is to 
create recognition patterns from the spectral differences of 
protein fragments (Figure 1) to distinguish cancer patients 
versus healthy controls (Figure 2).  The first two canonical 
coefficients of Can-1 and Can-2 in Figure 2 show that the 
classes differ most widely on the linear combination of the 
mass peaks.

The optimal discriminatory pattern is identified from 
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the best combination of m/z bins consisting of the unique 
cluster of classifiers.

The misclassified rate in Table 1 confirms that the dis-
crimination model established is valid and reliable.  To 

confirm the accuracy, the blinding test data are used for 
determining the ability to distinguish between those with 
the disease and those without the disease in terms of sen-
sitivity, specificity, and the PPV of the patterns.  The con-
sistently high level of performance on the testing spectra 
demonstrates that it was not over fit to the training spectra.

A classification from training/test-data split allows 30% 
classification of the OC-WCX2a samples with a sensitivity 
of 97.67%, a specificity of 98.86%, and PPV of 98.85%.  A 
good performance was achieved on the OC-WCX2b data 
set.  The classification was perfect, that is, the test samples 
were classified with a sensitivity of 100%, a specificity of 
100%, and a PPV of 100% (Table 2).

The intrinsic person-to-person variability of the content 
of biofluids, the variances in sample processes, and in-
strumental operations makes the recognition pattern in the 
background of a dynamic proteome extremely challeng-
ing.  Tests results are dichotomized (cancer or healthy), but 
diseases often present in gradations of severity.  Spectrum 

Figure 1.  Mass spectral samples of cancer 
(solid line) and non-cancer (dotted line) 
patients.

Figure 2.  Discriminatory power of the canonical variables in the linear 
discrimination.

Table 1.  Diagnosis of discrimination model.

     Sample                                               Misclassified rate
                                                Resubstitution                 Cross-validation  
 
	 OC-WCX2a               	 1/65 (1.5%)              	 2/65 (3.1%)
  	OC-ECX2b                	 0/76                          	 0/76

Table 2.  Sensitivity, specificity, and PPV for test data set.

      Sample                      Sensitivity            Specificity                PPV  
 
	 OC-WCX2a               	 97.67       	 98.86     	 98.85
	 OC-ECX2b              	 100.0       	 100.0     	 100.0
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changes in disease severity however can change sensitivity 
and specificity.  If the sample spectrum discriminant space 
is nearly equidistant to two class means, it is an ambiguous 
spectrum.  The classification for the ambiguous spectrum 
is not likely constant on some classifiers.  In more severe 
disease, the sensitivity goes up and it seems more likely to 
be able to make a good diagnosis.  In cases where a dis-
ease is suspected when there is no disease present (such as 
benign ovarian cancer or non-gynecological inflammatory 
disorder), the disease might be harder to be diagnosed cor-
rectly.  In our study, the success in correctly diagnosing 
stage I ovarian cancer suggested that proteomics patterns 
generated from biofluids provided a useful indicator of the 
early onset of the disease.  There are many premenopausal 
stage I cancers that are much younger than many of the 
postmenopausal controls in our study sets.  Age is not a 
driver for classification since the premenopausal stage I 
cancers were classified correctly, as were all of the post-
menopausal controls in the blinded testing.  Sources of bias 
include sample handling differences between cases and 
controls, preparation and application of the laser desorption 
ionization matrix, and the use of different SELDI[13–15].  The 
spectrum quality typically varies with different samples, 
experimental formats, instruments, and laboratories[16].  
Ongoing work is been conducted in an effort to understand 
the incorrect classifications due to the ambiguous spectra.  
Recently, attempts have been made to assess the spectral 
quality to determine weather a spectrum is a likely candi-
date for further analysis[17,18].  In addition, the combination 
of the proteomic approach with other methods of ovarian 
cancer diagnosis, such as cancer antigen (CA-125) for 
ovarian cancer and ultrasound, molecular fingerprints, or a 
histopathological assessment can further improve the preci-
sion.

We have discussed in detail the steps in preprocessing 
the mass spectral data for pattern discovery, as well as our 
criterion for choosing a small set of peaks for classifying 
samples.  The information that is critical for building mod-
els with strong prediction capabilities should be retained.  
With more experience, the preprocessing methods will im-
prove in sophistication and robustness.

The field of clinical chemistry has not yet established a 
thorough knowledge base of the compendium of molecular 
entities that exist in serum or plasma in the LMW range[1].  
At this time, there is no complete list of all of the peptides 
and molecules that are normally found in the circulation of 
humans.  Organic metabolites, lipids (such as lysophospha-
tidic acid or LPA), small peptides, and protein fragments 
are all analyzed by laser desorption ionization–TOF MS.  

Discussion
Serum samples were obtained before examination, di-

agnosis, or treatment, and were immediately frozen in liq-
uid nitrogen.  At the laboratory, the samples were thawed 
and separated into 10 µL portions.  The separated serum 
was applied to the surface of a protein-binding chip, and 
washed with pH-adjusted buffer.  The bound proteins were 
then treated with a MALDI matrix, washed, and dried.  The 
chip, containing multiple patient samples, was inserted 
into a vacuum chamber where it would be irradiated with 
a laser.  The laser desorbed the adherent proteins, causing 
them to be launched as ions.  The TOF of the ion before 
detection by an electrode is a measure of the m/z value of 
the ion.

Mathematical patterns do not necessarily determine 
the identity of the proteins that prove to be useful to de-
tect early disease or response to treatment.  Many of these 
proteins can be identified lead to an understanding of the 
molecular pathways involved in disease states.  Besides 
ovarian cancer, similar techniques are being applied to 
other cancers.  Researchers are looking for protein patterns 
in the blood that are diagnostic for early-stage aggressive 
prostate, lung, and breast cancers, as well as patterns that 
can predict the risk for prostate, colon, skin, and pancreatic 
cancers.  To identify the molecules of the differentially-
expressed proteins most important in discrimination, it 
would be interesting in future work to take advantage of 
the additional information experimentally-available from 
controlled proteolytic digests or MS/MS.  A peptide’s se-
quence is directly identified by MS/MS, or tandem MS is 
applied to a proteolytic digest of the target proteins after 
these fragments have been separated via chromatography 
(eg liquid chromatography MS).  The work is yielding new 
insights about which molecular pathways are altered in tu-
mor development.  

In order for laser desorption ionization–TOF MS pro-
filing to become a clinically-reliable tool, it must undergo 
validation.  The validation of discriminatory peaks in the 
mass spectra should include statistically–powered indepen-
dent testing and validation sets that include large numbers 
of inflammatory controls, benign disorders, and healthy 
controls, as well as other cancers.  Quality control and ref-
erence materials for SELDI or MALDI–TOF MS should be 
developed and used more widely to monitor and improve 
method reliability.  Standardized protocols should be de-
veloped for sample collection, handling, and processing to 
avoid or reduce bias.  

The use of a higher resolution mass spectrometer has 
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demonstrated that high-resolution spectrometry affords 
the best spectral reproducibility over time, can produce 
accurate mass tagging, as well as overall superior clinical 
accuracy.  Plans are also in place to gain early access to 
the latest generation and most sensitive MS instrument, the 
Fourier transform ion cyclotron resonance MS, which will 
be used for the detection of low-abundance proteins and 
their post-translational modifications in tissues and biologi-
cal fluids.  The instrumentation is capable of both high-
throughput and complete protein characterization. This 
throughput allows for key discriminatory features (key m/z 
values) to be distinguished within hundreds of serum or 
plasma samples to detect diseases, such as cancer at earlier 
stages, to enable more effective medical intervention.  

Proteomics approaches, such as the use of a SELDI 
mass spectrometer in conjunction with LDA, could greatly 
facilitate the diagnosis pattern of ovarian cancer.  The 
mathematical principles and computations in our method 
are different from the previously-reported bioinformatics 
tools.  The results from same samples with different meth-
ods can be used for comparison.  Our mathematical model 
is quite flexible in that it allows putting risk factors of 
ovarian cancer into the model for strata analysis.  The high 
sensitivity and specificity archieved by our method shows 
great potential for the early detection of ovarian cancer.
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